

$m \subset m \subset$

Munich Center for Machine Learning

Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model

Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel

LMU Munich & Munich Center for Machine Learning (MCML), Munich, Germany

NeurIPS 2023, Spotlight Presentation

Introduction: Counterfactual identification in Markovian SCMs

- Counterfactual inference is widely used in data-driven decision-making: it aims to answer
 retrospective "what if" questions
- Why this is
- important?

 Counterfactual identifiability is only possible with unnatural or unrealistic assumptions (e.g. monotonicity of the functions in the Markovian structural causal models (SCMs))

Given observational dataset from $\mathbb{P}^{\mathcal{M}}(Y, A)$, induced by some bivariate SCM \mathcal{M} with

treatments
 (factual) outcomes

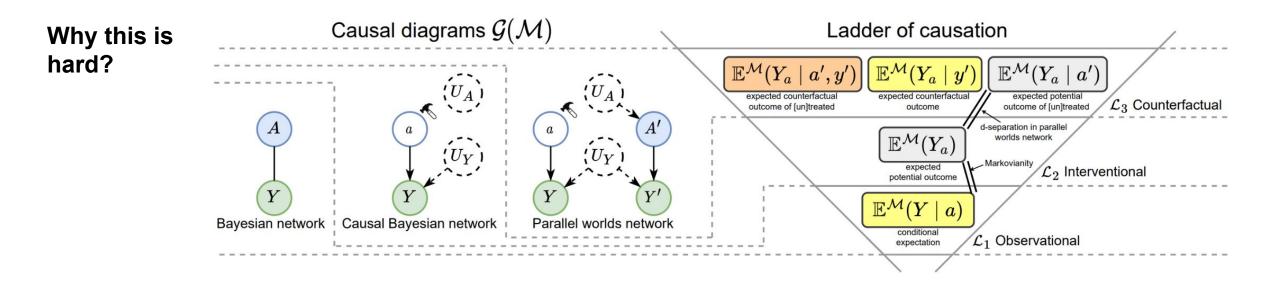
$\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbb{P}(\mathbf{U}), \mathcal{F} \rangle$ $\mathbf{U} = \{U_A \in \{0, 1\}, U_Y \in [0, 1]^d\}$ $\mathbf{V} = \{A \in \{0, 1\}, Y \in \mathbb{R}\}$ $\mathbb{P}(\mathbf{U}): U_A \sim \text{Bern}(p_A), 0 < p_A < 1,$ $U_Y \sim \text{Unif}(0, 1)^d$ $\mathcal{F} = \{f_A(U_A) = U_A, f_Y(A, U_Y)\}$

Problem formulation

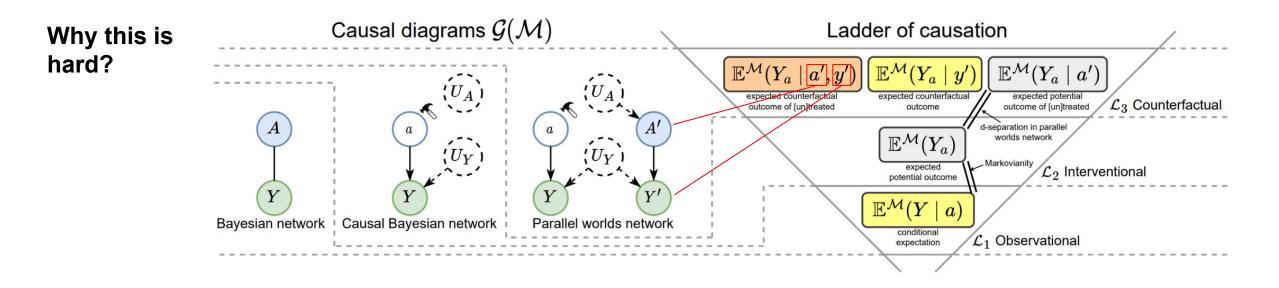
we want to perform a partial identification of an **expected counterfactual outcome of [un]treated** ECOU [ECOT]

$$Q_{a' \to a}^{\mathcal{M}}(y') = \mathbb{E}^{\mathcal{M}}(Y_a \mid a', y')$$

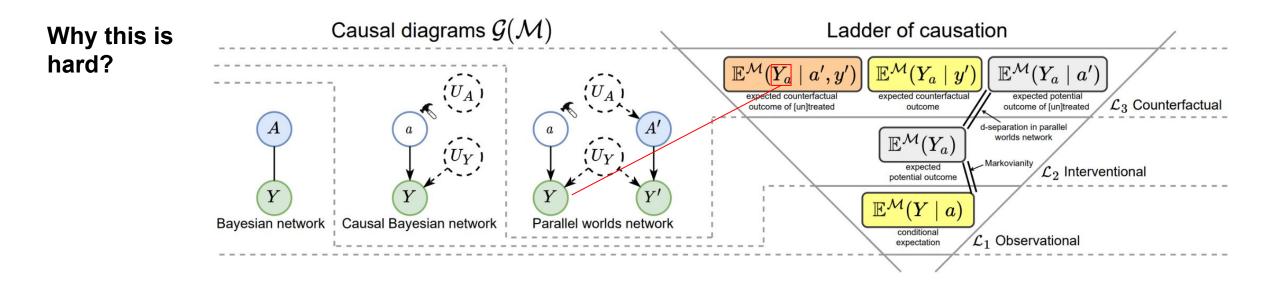
- Counterfactual queries in general are not identifiable from both L1 and L2 data even for Markovian SCMs
- Partial identification of L3 discrete outcomes / L2 continuous outcomes does not generalize -> we need brand new mathematical tools for L3 partial identification with continuous outcomes



- Counterfactual queries in general are not identifiable from both L1 and L2 data even for Markovian SCMs
- Partial identification of L3 discrete outcomes / L2 continuous outcomes does not generalize -> we need brand new mathematical tools for L3 partial identification with continuous outcomes



- Counterfactual queries in general are not identifiable from both L1 and L2 data even for Markovian SCMs
- Partial identification of L3 discrete outcomes / L2 continuous outcomes does not generalize -> we need brand new mathematical tools for L3 partial identification with continuous outcomes



	Layer	M/SM	Symbolic identifiability	Point identification methods	Partial ide Discrete outcomes	entification methods Continuous outcomes
Related work	ıal	Μ	Always via back- door criterion [6]	Deep generative models [70, 138]	—	
	\mathcal{L}_2 Interventional	SM	Do-calculus & rules of probability [52, 75, 114]	Potential outcomes framework [12, 26, 48, 85, 105, 124] ; binary IV [36, 54, 125] ; proxy variables [81, 87]	Partially observed back- /front-door variables [77]; canonical SCM [130]	No-assumptions bound [83]; MSM [13, 33, 37, 56, 57, 58, 84, 92, 120]; outcome sensitivity models [13, 100]; confounding functions [9, 15, 103]; noisy proxy variables [45]; IV [44, 51, 64, 139]; ATD [3]; clus- tered DAGs [93]
	\mathcal{L}_3 Counterfactual	М	Parallel worlds net- works [2, 115], coun- terfactual unnesting theorem [25]	Deep generative models [19, 27, 66, 94, 107, 108, 111, 112] ; Markovian BGMs [55, 62, 88, 89, 117, 142] ; transport-based counterfactuals [30]	PN, PS, PNS [4, 76, 78, 97, 121]; response func- tions framework / canon- ical partitioning [4, 91, 106, 131, 135, 136, 137, 141]; causal marginal problem [42, 109]; deep twin networks [123]	CSM (this paper)
		SM		ETT [113] ; path-specific effects [116, 140] ; deep generative models [29, 80, 128, 129, 134] ; semi-Markovian BGMs [88]		Future work (see discussion in Appendix E); ANMs with hidden confounding [65]

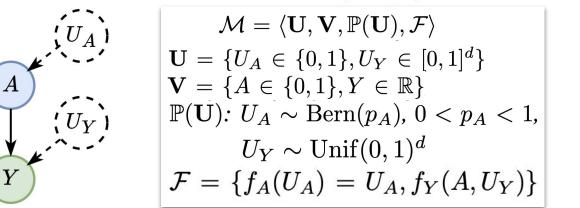
Legend:

• M/SM: Markovian SCM (M), semi-Markovian SCM (SM)

Introduction: Assumptions - Motivating example

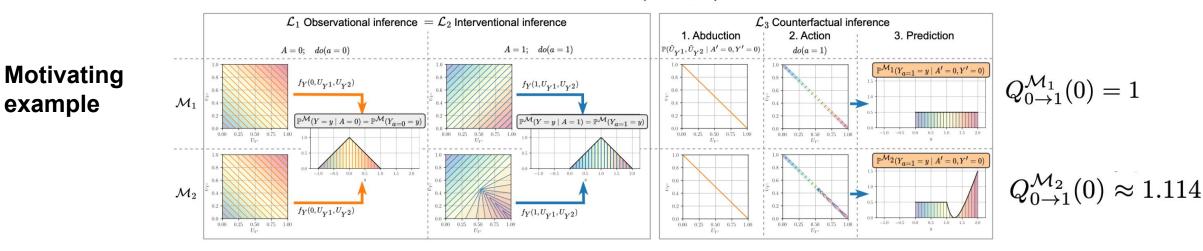
• **Bivariate Markovian SCMs** with continuously-differentiable functions and high-dimensional latent noise: $\mathfrak{B}(C^k, d)$, k >= 0, d > 0

Assumptions



$$f_Y(a,\cdot)\in C^k$$

• ECOU [ECOT] is non-identifiable in $\mathfrak{B}(C^k, d)$



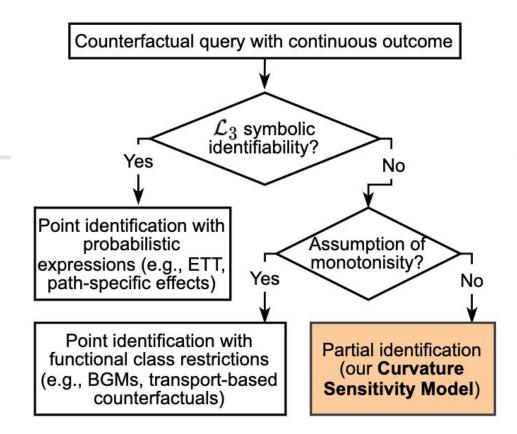
Introduction: Research gap – Our contributions

Research gap We are the first to propose a sensitivity model for partial counterfactual identification of continuous outcomes in Markovian SCMs

- We prove that the expected counterfactual outcome of [un]treated has non-informative bounds in B(C^k, d)
- We propose the first sensitivity model, namely, Curvature Sensitivity Model (CSM), to obtain informative bounds.

- Our
- contributions

 We introduce a novel deep generative model called Augmented
 Pseudo-Invertible Decoder (APID) to perform partial counterfactual inference under our CSM



Partial Counterfactual Identification: Formulation

• Given the observational distributions, $\mathbb{P}(Y \mid a)$, we want to solve a constrained variational problem, which involves partial derivatives and Hausdorff integrals:

$$\frac{Q_{a' \to a}(y')}{Q_{a' \to a}(y')} = \inf_{\mathcal{M} \in \mathfrak{B}(C^k, d)} Q_{a' \to a}^{\mathcal{M}}(y') \quad s.t. \ \forall a \in \{0, 1\} : \mathbb{P}(Y \mid a) = \mathbb{P}^{\mathcal{M}}(Y \mid a)$$

$$\overline{Q_{a' \to a}(y')} = \sup_{\mathcal{M} \in \mathfrak{B}(C^k, d)} Q_{a' \to a}^{\mathcal{M}}(y') \quad s.t. \ \forall a \in \{0, 1\} : \mathbb{P}(Y \mid a) = \mathbb{P}^{\mathcal{M}}(Y \mid a)$$

Partial counterfactual identification of ECOU [ECOT]

Partial Counterfactual Identification: Formulation

• Given the observational distributions, $\mathbb{P}(Y \mid a)$, we want to solve a constrained variational problem, which involves partial derivatives and Hausdorff integrals:

$$\begin{aligned} \frac{Q_{a' \to a}(y')}{Q_{a' \to a}(y')} &= \inf_{\mathcal{M} \in \mathfrak{B}(C^k, d)} Q_{a' \to a}^{\mathcal{M}}(y') \quad s.t. \ \forall a \in \{0, 1\} : \mathbb{P}(Y \mid a) = \mathbb{P}^{\mathcal{M}}(Y \mid a) \\ \overline{Q_{a' \to a}(y')} &= \sup_{\mathcal{M} \in \mathfrak{B}(C^k, d)} Q_{a' \to a}^{\mathcal{M}}(y') \quad s.t. \ \forall a \in \{0, 1\} : \mathbb{P}(Y \mid a) = \mathbb{P}^{\mathcal{M}}(Y \mid a) \end{aligned}$$

$$\begin{aligned} \text{ual} \quad \text{Observational distribution is a pushforward distribution:} \\ \mathbb{P}^{\mathcal{M}}(Y = y \mid a) &= \int_{E(y, a)} \frac{1}{\|\nabla_{u_Y} f_Y(a, u_Y)\|_2} \, \mathrm{d}\mathcal{H}^{d-1}(u_Y). \end{aligned}$$

Partial counterfactual identification of ECOU [ECOT]

Partial Counterfactual Identification: Formulation

• Given the observational distributions, $\mathbb{P}(Y \mid a)$, we want to solve a constrained variational problem, which involves partial derivatives and Hausdorff integrals:

$$\frac{Q_{a' \to a}(y')}{Q_{a' \to a}(y')} = \inf_{\substack{\mathcal{M} \in \mathfrak{B}(C^k, d) \\ \mathcal{M} \in \mathfrak{B}(C^k, d)}} \frac{Q_{a' \to a}^{\mathcal{M}}(y')}{\int_{\mathcal{M} \in \mathfrak{B}(C^k, d)}} \quad s.t. \ \forall a \in \{0, 1\} : \mathbb{P}(Y \mid a) = \mathbb{P}^{\mathcal{M}}(Y \mid a)$$

• Observational distribution is a pushforward distribution:

Partial counterfactual identification of ECOU [ECOT]

$$\mathbb{P}^{\mathcal{M}}(Y = y \mid a) = \int_{E(y,a)} \frac{1}{\left\| \nabla_{u_Y} f_Y(a, u_Y) \right\|_2} \, \mathrm{d}\mathcal{H}^{d-1}(u_Y)$$

• Counterfactual queries are expectations of pushforward distributions:

$$\mathbb{P}^{\mathcal{M}}(Y_{a} = y \mid a', y') = \frac{1}{\mathbb{P}^{\mathcal{M}}(Y = y' \mid a')} \int_{E(y', a')} \frac{\delta(f_{Y}(a, u_{Y}) - y)}{\|\nabla_{u_{Y}} f_{Y}(a', u_{Y})\|_{2}} \, \mathrm{d}\mathcal{H}^{d-1}(u_{Y})$$
$$Q_{a' \to a}^{\mathcal{M}}(y') = \mathbb{E}^{\mathcal{M}}(Y_{a} \mid a', y') = \frac{1}{\mathbb{P}^{\mathcal{M}}(Y = y' \mid a')} \int_{E(y', a')} \frac{f_{Y}(a, u_{Y})}{\|\nabla_{u_{Y}} f_{Y}(a', u_{Y})\|_{2}} \, \mathrm{d}\mathcal{H}^{d-1}(u_{Y})$$

Partial Counterfactual Identification: Non-Informative Bounds

• Partial counterfactual identification of ECOU [ECOT] has two solutions in class $\mathfrak{B}(C^1, 1)$ (d = 1, k = 1), when $f_Y(a, \cdot)$ is strictly monotonous:

Solution for d = 1

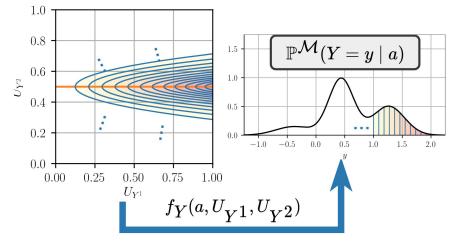
 $Q_{a' \to a}^{\mathcal{M}}(y') = \mathbb{F}_a^{-1}(\pm \mathbb{F}_{a'}(y') \mp 0.5 + 0.5)$

where \mathbb{F}_a^{-1} is an inverse CDF of the observational distribution $\mathbb{P}(Y \mid a)$

• This class is known as **bijective generative mechanisms**¹ (BGMs)

Non-informative bounds

Theorem 1 (informal). The ignorance interval for the partial identification of the ECOU [ECOT] has non-informative bounds for SCMs in B(C^k, d) for every k > 1

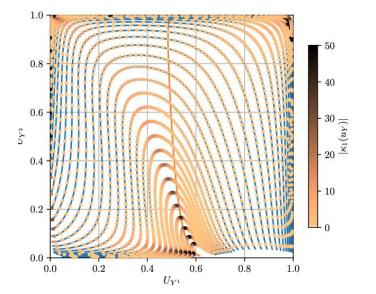


Arash Nasr-Esfahany, Mohammad Alizadeh, and Devavrat Shah. "Counterfactual identifiability of bijective causal models". In: International Conference on Machine Learning. 2023.

CSM: Assumption Kappa - Informative bounds

Curvature sensitivity model (CSM) = Assumption κ

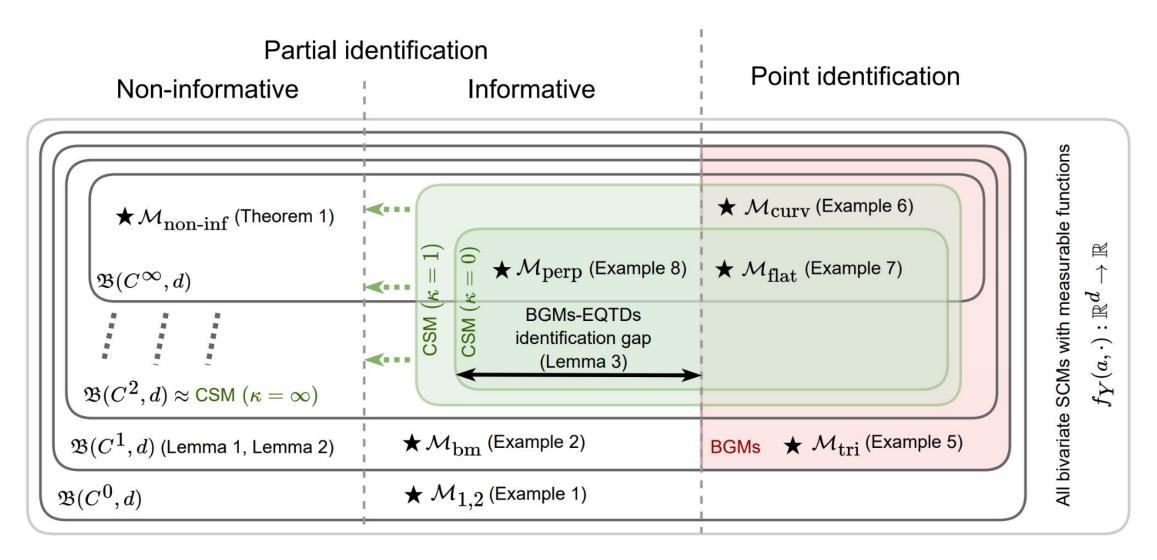
$$\kappa_1(u_Y) = -\frac{1}{2} \nabla_{u_Y} \left(\frac{\nabla_{u_Y} f_Y(a, u_Y)}{\left\| \nabla_{u_Y} f_Y(a, u_Y) \right\|_2} \right)$$



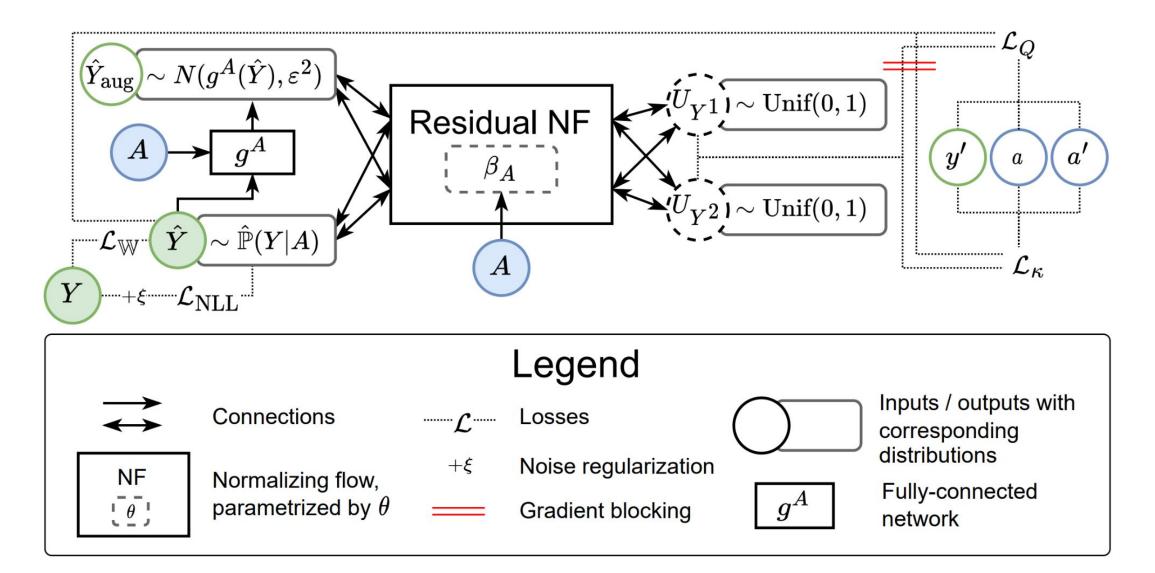
Partial identification with informative bounds

- Theorem 2 (informal). Under Assumption κ, the ignorance interval for the partial identification of the ECOU [ECOT] has informative bounds for SCMs in B(C^k, d) for k = 2 and d > 1
- When κ = 0, we do not obtain a point identification, but a **BGMs-EQTDs** identification gap

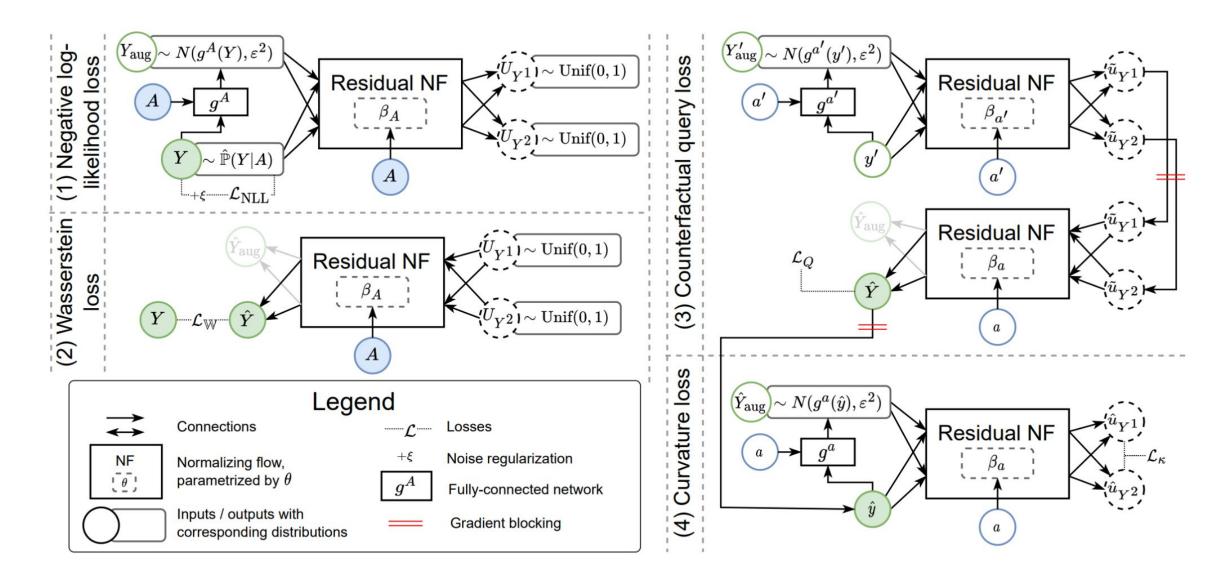
CSM: Identification spectrum



Augmented Pseudo Invertible Decoder: Novel deep generative model



Augmented Pseudo Invertible Decoder: Training

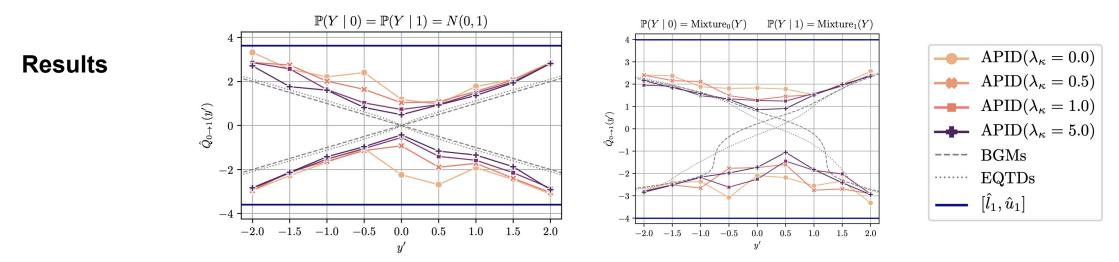


Experiments: Datasets – Results

• We evaluate APID based on 2 synthetic dataset and 1 real-world COVID-19 pandemic data $\begin{cases} Y \mid 0 \sim \mathbb{P}(Y \mid 0) = N(0, 1) \\ Y \mid 1 \sim \mathbb{P}(Y \mid 1) = N(0, 1) \end{cases}$

Datasets

- $\begin{cases} Y \mid 0 \sim \mathbb{P}(Y \mid 0) = \text{Mixture}(0.7 N(-0.5, 1.5^2) + 0.3 N(1.5, 0.5^2)), \\ Y \mid 1 \sim \mathbb{P}(Y \mid 1) = \text{Mixture}(0.3 N(-2.5, 0.35^2) + 0.4 N(0.5, 0.75^2) + 0.3 N(2.0, 0.5^2)) \end{cases}$
- Even for synthetic data, we the GT counterfactual queries are intractable
- APID is consistent with the BGMs-EQTDs identification gap



Conclusion

Our work is the first to present a **sensitivity model for partial counterfactual identification** of **continuous outcomes** in Markovian SCMs

Our work rests on the assumption of the **bounded curvature of the level sets**, yet which should be sufficiently broad and realistic to cover many models from physics and medicine

Source Code: github.com/Valentyn1997/ <u>CSM-APID</u>

ArXiv Paper: arxiv.org/abs/2306.01424